Tissue-specific SMARCA4 binding at active and repressed regulatory elements during embryogenesis.
نویسندگان
چکیده
The SMARCA4 (also known as BRG1 in humans) chromatin remodeling factor is critical for establishing lineage-specific chromatin states during early mammalian development. However, the role of SMARCA4 in tissue-specific gene regulation during embryogenesis remains poorly defined. To investigate the genome-wide binding landscape of SMARCA4 in differentiating tissues, we engineered a Smarca4(FLAG) knock-in mouse line. Using ChIP-seq, we identified ∼51,000 SMARCA4-associated regions across six embryonic mouse tissues (forebrain, hindbrain, neural tube, heart, limb, and face) at mid-gestation (E11.5). The majority of these regions was distal from promoters and showed dynamic occupancy, with most distal SMARCA4 sites (73%) confined to a single or limited subset of tissues. To further characterize these regions, we profiled active and repressive histone marks in the same tissues and examined the intersection of informative chromatin states and SMARCA4 binding. This revealed distinct classes of distal SMARCA4-associated elements characterized by activating and repressive chromatin signatures that were associated with tissue-specific up- or down-regulation of gene expression and relevant active/repressed biological pathways. We further demonstrate the predicted active regulatory properties of SMARCA4-associated elements by retrospective analysis of tissue-specific enhancers and direct testing of SMARCA4-bound regions in transgenic mouse assays. Our results indicate a dual active/repressive function of SMARCA4 at distal regulatory sequences in vivo and support its role in tissue-specific gene regulation during embryonic development.
منابع مشابه
Tissue specificity of hedgehog repression by the Polycomb group during Drosophila melanogaster development
During embryogenesis and wing disc morphogenesis in Drosophila, different developmental mechanisms are used along the antero-posterior (A-P) axis. The establishment of antero-posterior polarity requires the secreted protein Hedgehog, which is only expressed in P compartments and which is a key effector of the Engrailed transcription factor. At the same time, it is essential that both engrailed ...
متن کاملCharacterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding.
Complex regulatory landscapes control the pleiotropic transcriptional activities of developmental genes. For most genes, the number, location, and dynamics of their associated regulatory elements are unknown. In this work, we characterized the three-dimensional chromatin microarchitecture and regulatory landscape of 446 limb-associated gene loci in mouse using Capture-C, ChIP-seq, and RNA-seq i...
متن کاملGenome-Wide Mapping of Chromatin State of Mouse Forelimbs.
BACKGROUND Cell types are defined at the molecular level during embryogenesis by a process called pattern formation and created by the selective utilization of combinations of sequence specific transcription factors. Developmental programs define the sets of genes that are available to each particular cell type, and real-time biochemical signaling interactions define the extent to which these s...
متن کاملAnalysis of the SWI/SNF chromatin-remodeling complex during early heart development and BAF250a repression cardiac gene transcription during P19 cell differentiation
The regulatory networks of differentiation programs and the molecular mechanisms of lineage-specific gene regulation in mammalian embryos remain only partially defined. We document differential expression and temporal switching of BRG1-associated factor (BAF) subunits, core pluripotency factors and cardiac-specific genes during post-implantation development and subsequent early organogenesis. U...
متن کاملBinding of trithorax and Polycomb proteins to the bithorax complex: dynamic changes during early Drosophila embryogenesis.
In Drosophila, the maintenance of developmentally important transcription patterns is controlled at the level of chromatin structure. The Polycomb group (PcG) and trithorax group (trxG) genes encode proteins involved in chromatin remodelling. PcG genes have been proposed to act by packaging transcriptional repressed chromosomal domains into condensed heterochromatin-like structures. Some of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2014